Analysis of EEG Signals during Language Tasks
نویسندگان
چکیده
The different regions of the brain have to interact to perform language processing. Such neural integration processes can be studied by measuring the synchronization of the brain signals. The purpose of this examination was to study the word fluency when one group, the Experiment group, generates word which begun by letters “A”,”B”,”F”, ”I”,”K”,”M”,”S”,”T” ,”U”. Every individual in the “Experiment group” have one minute to generate words for each letter. The second group, the Control group, did not generate any words. The data from the “Control group” were compared with the “Experiment group” data. The Wavelet-phase coherence is a well known algorithm, which is used to analyze the phase cross-coherence or phase synchronization between two channels in different frequency bands: delta 2-4 Hz , theta 4-8 Hz , alpha 8-13 Hz , beta 13-30 Hz , gamma 30-50 Hz . The phase synchronization is defined between (−180◦, 180◦) degrees and the phase cross-coherence between (0.00, 1.00). Phase cross-coherence quantifies the phase synchronization in particular. In addition, the phase cross-coherence gives us information about the direction and speed of the oscillation in terms of the phase angle. The phase crosscoherence was used to analyse the short-time phases between different channels in order to explore the brain activity during word generation. The Wavelet-phase coherence algorithm uses the Discrete Fast Fourier Transform (FFT) function with a significance level of p≤ 0.01 to analyse the data for phase cross-coherence, spectral power, ERSP and ERP. The Discrete Fast Fourier Transform (FFT) is an algorithm that converts a sampled complex-valued function of time into a sampled complex-valued function of frequency. The ERSP (event-related spectral perturbation) measures the mean changes in spectral power (in dB) from baseline. The brain activity in the experiment group and the control group was analyzed by using the EEGLAB program. The result showed a significant difference between the two groups. The first group (Experiment group) shows a word fluency that slow down at the end of the one minute time interval. The spectral power and the phase cross-coherence varied in different frequency bands and over time for the different groups. Analys av EEG-signaler under ordflödet Sammanfattning Olika delar av hjärnan samarbetar under språkprocessen. Den neurella integrerande processen analyseras genom att mäta hjärnsignalsynkroniseringen. Målet med examensarbetet var att analysera ordflödet när den första gruppen Experiment group genererade ord som börjar med bokstäverna “A”,”B”,“F”, “I”,”K”,“M”,”S”,”T” ,”U” under en minut för varje bokstav. Den andra gruppen Control group var passiv. Dataresultat från kontrollgruppen jämfördes med experimentgruppens data. Wavelet-phase är en välkänd algoritm som används för att analysera faskoherens eller fassynkronisering mellan två signaler i olika frekvensintervall: delta 2−4 Hz , theta 4−8 Hz , alfa 8−13 Hz , beta 13−30 Hz och gamma 30−50 Hz . Fassynkroniseringen är definierad mellan [-180, 180] grader och faskoherensen mellan [0.00, 1.00]. Faskoherensen kvantifierar enbart fassynkronisering. Faskoherensen ger oss dessutom information om riktning och hastighet hos signaler genom att mäta deras fasgrader. Faskorskoherens användes för att analysera korttidsfaserna mellan olika kanaler för att utforska hjärnaktiviteten under ordflödet. EEG-signalernas spektralenergi, ERSP, ERP och faskoherens analyserades med en Wavelet-Phase-funktion som använder algoritmen snabb Fouriertransform (FFT) med en signifikant nivå på p≤ 0.01. Snabb Fouriertransform (FFT) är en algoritm som konverterar en komplexvärd funktion av tid till en komplexvärd funktion av frekvens. Händelserelaterad spektralenergi (ERSP) mäter medelvärdets ändring i spektralenergi uttryckt i (dB) från den refererade händelsen. Hjärnaktiviteten i experimentgruppen och kontrollgruppen analyserades med hjälp av EEGLAB-programmet. Resultatet visade en signifikant skillnad mellan grupperna. Dessutom visade experimentgruppen ett långsammare ordflöde i slutet av en-minutersintervallet. Spektralenergi och faskorskoherens varierade i olika frekvensband över tiden för båda gruppena.
منابع مشابه
A Unique Approach of Noise Elimination from Electroencephalography Signals between Normal and Meditation State
In this paper, unique approach is presented for the electroencephalography (EEG) signals analysis. This is based on Eigen values distribution of a matrix which is called as scaled Hankel matrix. This gives us a way to find out the number of Eigen values essential for noise reduction and extraction of signal in singular spectrum analysis. This paper gives us an approach to classify the EEG signa...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملAssessing the Effects of Alzheimer’s disease on EEG Signals Using the Entropy Measure: a Meta-Analysis
Introduction and Aims: Alzheimer’s disease is the most prevalent neurodegenerative disorder and a type of dementia. 80% of dementia in older adults is because of Alzheimer’s disease. According to multiple research articles, Alzheimer's has several changes in EEG signals such as slowing of rhythms, reduction in complexity and reduction in functional associations, and disordered functional commun...
متن کاملOptimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملA Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملClassification of EEG Signals for Discrimination of Two Imagined Words
In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...
متن کامل